Database Security and Privacy
Security Objectives

Secrecy

Prevent/detect/deter improper Disclosure of information

Integrity

Prevent/detect/deter Improper modification of information

Availability

Prevent/detect/deter improper Denial of access to services
Policy

Organizational policy

Information systems policy
Databases

- Collection of
 - interrelated data and
 - set of programs to access the data
- Convenient and efficient processing of data
- Database Application Software
Database Security

- **Protect Sensitive Data from**
 - Unauthorized disclosure
 - Unauthorized modification
 - Denial of service attacks

- **Security Controls**
 - Security Policy
 - Access control models
 - **Integrity protection**
 - Privacy problems
 - Fault tolerance and recovery
 - Auditing and intrusion detection
Protection of Data Confidentiality

- **Access control** – which data users can access
- **Information flow control** – what users can do with the accessed data
- **Data Mining**
Access Control

- Ensures that all direct accesses to object are authorized
- Protects against accidental and malicious threats by regulating the read, write and execution of data and programs
Access Control

Requires:

- Proper user identification
- Information specifying the access rights is protected from modification
Access Control

- **Access control components:**
 - **Access control policy:** specifies the authorized accesses of a system
 - **Access control mechanism:** implements and enforces the policy
HOW TO SPECIFY ACCESS CONTROL?
Access Control

- **Subject**: active entity that requests access to an object
 - e.g., user or program
- **Object**: passive entity accessed by a subject
 - e.g., record, relation, file
- **Access right (privileges)**: how a subject is allowed to access an object
 - e.g., subject s can read object o
Protection Object

- Database
- Relation
- Record
- Attribute
- Element

Advantages vs. disadvantages of supporting different granularity levels
Relation-Level Granularity

Confidential relation

<table>
<thead>
<tr>
<th>Person-name</th>
<th>Company-name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>BB&C</td>
<td>$43,982</td>
</tr>
<tr>
<td>Dell</td>
<td>Bell</td>
<td>$97,900</td>
</tr>
<tr>
<td>Black</td>
<td>BB&C</td>
<td>$35,652</td>
</tr>
</tbody>
</table>
Tuple-level Granularity

Works

<table>
<thead>
<tr>
<th>Person-name</th>
<th>Company-name</th>
<th>Salary</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>BB&C</td>
<td>$43,982</td>
<td>Public</td>
</tr>
<tr>
<td>Dell</td>
<td>Bell</td>
<td>$97,900</td>
<td>Conf.</td>
</tr>
<tr>
<td>Black</td>
<td>BB&C</td>
<td>$35,652</td>
<td>Public</td>
</tr>
</tbody>
</table>
Attribute-Level Granularity

Works

<table>
<thead>
<tr>
<th>Person-name</th>
<th>Publ.</th>
<th>Company-name</th>
<th>Publ.</th>
<th>Salary</th>
<th>Conf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td></td>
<td>BB&C</td>
<td></td>
<td>$43,982</td>
<td></td>
</tr>
<tr>
<td>Dell</td>
<td>Bell</td>
<td></td>
<td></td>
<td>$97,900</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>BB&C</td>
<td></td>
<td></td>
<td>$35,652</td>
<td></td>
</tr>
</tbody>
</table>
Cell-Level Granularity

Works

<table>
<thead>
<tr>
<th>Person-name</th>
<th>Company-name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>P BB&C</td>
<td>$43,982</td>
</tr>
<tr>
<td>Dell</td>
<td>C Bell</td>
<td>$97,900</td>
</tr>
<tr>
<td>Black</td>
<td>P BB&C</td>
<td>$35,652</td>
</tr>
</tbody>
</table>
Access Control Policies

- Discretionary Access Control (DAC)
- Mandatory Access Control (MAC)
- Role-Based Access Control (RBAC)
Discretionary Access Control (DAC)

- For each subject access right to the objects are defined
 - (subject, object, +/- access mode)
 - (Black, Employee-relation, read)
- User based
- Grant and Revoke
- Problems:
 - Propagation of access rights
 - Revocation of propagated access rights
DAC by Grant and Revoke

- **Brown** (owner)
 - GRANT SELECT ON Employee TO Black WITH GRANT OPTION
 - GRANT UPDATE(Salary) ON Employee TO White
 - Brown revokes grant given to Black
 - Brown does not want Red to access the Employee relation

- **Black**
 - GRANT SELECT ON Employee TO Red

- **Red**
 - Brown does not want Red to access the Employee relation

- **White**
Implementation

Access Control List (column) (ACL)

File 1
Joe: Read
Joe: Write
Joe: Own

File 2
Joe: Read
Sam: Read
Sam: Write
Sam: Own

Capability List (row)

Joe: File 1/Read, File 1/Write, File 1/Own, File 2/Read
Sam: File 2/Read, File 2/Write, File 2/Own

Access Control Triples

<table>
<thead>
<tr>
<th>Subject</th>
<th>Access</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>Read</td>
<td>File 1</td>
</tr>
<tr>
<td>Joe</td>
<td>Write</td>
<td>File 1</td>
</tr>
<tr>
<td>Joe</td>
<td>Own</td>
<td>File 1</td>
</tr>
<tr>
<td>Joe</td>
<td>Read</td>
<td>File 2</td>
</tr>
<tr>
<td>Sam</td>
<td>Read</td>
<td>File 2</td>
</tr>
<tr>
<td>Sam</td>
<td>Write</td>
<td>File 2</td>
</tr>
<tr>
<td>Sam</td>
<td>Own</td>
<td>File 2</td>
</tr>
</tbody>
</table>
Access Control Mechanisms

- Security through Views
- Stored Procedures
- Grant and Revoke
- Query modification
Security Through Views

- Assign rights to access predefined views

  ```sql
  CREATE VIEW Outstanding-Student
  AS SELECT NAME, COURSE, GRADE
  FROM Student
  WHERE GRADE > B
  ```

Problem:

Difficult to maintain updates.
Stored Procedures

- Assign rights to execute compiled programs
- GRANT RUN ON <program> TO <user>

Problem:
Programs may access resources for which the user who runs the program does not have permission.
Grant and Revoke

GRANT <privilege> ON <relation>
To <user>

[WITH GRANT OPTION]

- GRANT SELECT * ON Student TO Matthews
- GRANT SELECT *, UPDATE(GRADE) ON Student TO FARKAS
- GRANT SELECT(NAME) ON Student TO Brown

GRANT command applies to base relations as well as views
Grant and Revoke

REVOKE <privileges> [ON <relation>]
FROM <user>

- REVOKE SELECT* ON Student FROM Blue
- REVOKE UPDATE ON Student FROM Black
- REVOKE SELECT(NAME) ON Student FROM Brown
Non-cascading Revoke

A revokes D’s privileges
Cascading Revoke

A revokes D’s privileges
Positive and Negative Authorization

Problem:
Contradictory authorizations
- GRANT <privilege> ON X TO <user>
- DENY <privilege> ON X TO <user>
What should happen with the privilege given by D To F?
Query Modification

- GRANT SELECT(NAME) ON Student TO Blue WHERE COURSE=“CSCE 590”

- Blue’s query:
 SELECT *
 FROM Student

- Modified query:
 SELECT NAME
 FROM Student
 WHERE COURSE=“CSCE 590”
DAC Overview

- **Advantages:**
 - Intuitive
 - Easy to implement

- **Disadvantages:**
 - Inherent vulnerability (look TH example)
 - Maintenance of ACL or Capability lists
 - Maintenance of Grant/Revoke
 - Limited power of negative authorization
Mandatory Access Control (MAC)

- **Security label**
 - Top-Secret, Secret, Public

- **Objects**: security classification
 - File 1 is Secret, File 2 is Public

- **Subjects**: security clearances
 - Brown is cleared to Secret, Black is cleared to Public

- **Dominance (≥)**
 - Top-Secret ≥ Secret ≥ Public
MAC

- **Access rights**: defined by comparing the security classification of the requested objects with the security clearance of the subject
- If access control rules are satisfied, access is permitted
- Otherwise access is rejected
- **Granularity** of access rights!
MAC – Bell-LaPadula (BLP) Model

- **Single security property**: a subject S is allowed a read access to an object O only if label(S) dominates label(O)
- **Star-property**: a subject S is allowed a write access to an object O only if label(O) dominates label(S)

No direct flow of information from high security objects to low security objects!
Multilevel Security

- Multilevel security ➔ users at different security level, see different versions of the database

- Problem: different versions need to be kept consistent and coherent *without downward signaling channel* (covert channel)
Multilevel Relation

- **Schema** $R(A_1, C_1, \ldots, A_n, C_n, T_c)$
 - R: relation name
 - A_i: attribute name
 - C_i: security classes
 - T_c: Tuple security classes

- **Instantiation of relation**: sets of tuples of the form
 $<a_1, c_1, \ldots, a_n, c_n, t_c>$
 - a_i: attribute value
 - c_i: attribute classification label
 - t_c: tuple classification label
Multilevel Relation Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>λ(SSN)</th>
<th>Course</th>
<th>λ(Course)</th>
<th>Grade</th>
<th>λ(Grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-22-3333</td>
<td>S</td>
<td>CSCE 786</td>
<td>S</td>
<td>A</td>
<td>TS</td>
</tr>
<tr>
<td>444-55-6666</td>
<td>S</td>
<td>CSCE 567</td>
<td>S</td>
<td>C</td>
<td>TS</td>
</tr>
</tbody>
</table>

Top-secret user sees all data
Secret user sees Secret-View:

<table>
<thead>
<tr>
<th>SSN</th>
<th>λ(SSN)</th>
<th>Course</th>
<th>λ(Course)</th>
<th>Grade</th>
<th>λ(Grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-22-3333</td>
<td>S</td>
<td>CSCE 786</td>
<td>S</td>
<td>null</td>
<td>S</td>
</tr>
<tr>
<td>444-55-6666</td>
<td>S</td>
<td>CSCE 567</td>
<td>S</td>
<td>null</td>
<td>S</td>
</tr>
</tbody>
</table>
Polyinstantiation

Secret user sees Secret-View:

<table>
<thead>
<tr>
<th>SSN</th>
<th>λ(SSN)</th>
<th>Course</th>
<th>λ(Course)</th>
<th>Grade</th>
<th>λ(Grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-22-3333</td>
<td>S</td>
<td>CSCE 786</td>
<td>S</td>
<td>null</td>
<td>S</td>
</tr>
<tr>
<td>444-55-6666</td>
<td>S</td>
<td>CSCE 567</td>
<td>S</td>
<td>null</td>
<td>S</td>
</tr>
</tbody>
</table>

• SSN is primary key
• Secret user wants to update Grade for 111-22-3333 from null (i.e., missing value) to F
 • Allow update: inconsistent database, at TS level two different tuples exist with the same primary key (see next slide)
 • Not allow update: downward signaling channel, update is because of the existence of a TS value
Polyinstantiation

Top-Secret View:

<table>
<thead>
<tr>
<th>SSN</th>
<th>(\lambda(\text{SSN}))</th>
<th>Course</th>
<th>(\lambda(\text{Course}))</th>
<th>Grade</th>
<th>(\lambda(\text{Grade}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-22-3333</td>
<td>S</td>
<td>CSCE 786</td>
<td>S</td>
<td>A</td>
<td>TS</td>
</tr>
<tr>
<td>111-22-3333</td>
<td>S</td>
<td>CSCE 786</td>
<td>S</td>
<td>F</td>
<td>S</td>
</tr>
<tr>
<td>444-55-6666</td>
<td>S</td>
<td>CSCE 567</td>
<td>S</td>
<td>C</td>
<td>TS</td>
</tr>
</tbody>
</table>