LDA Based Topic Modeling

- Background
Information Retrieval (IR) Methodology

- **tf-idf scheme** (Salton and McGill, 1983)
 - Documents are reduced to a vector of real numbers, each number represents ratios of counts.
 - Counts terms in documents, reduces arbitrary length of documents to fixed-length lists of numbers.
 - Fails to reveal statistical structure inside/between documents.

- **aspect model** (Hofmann, 1999)
 - A generative probabilistic latent semantic indexing (pLSI).
 - Models each word in a document as a sample from mixture of ‘topics’.
 - Each document is represented as a probability distribution on a fixed number of ‘topics’.
Fundamental Probabilistic Assumption of pLSI

- ‘bag-of-words’
 - Order of words in a document can be neglected
 - Order of documents in a corpus can be neglected
 - Assumption of ‘exchangeable random variables’

- Not providing model at the level of documents
 - A document is just a list of numbers (mixing proportions for topics)
 - Number of parameters grows linearly, leads to over-fitting
 - Cannot assign probability to a document outside of training set
Any collection of exchangeable random variables has a representation as a mixture distribution – in general an infinite mixture

- ‘exchangeability’ means *conditionally* independent and identically distributed, where conditioning is with respect to an underlying *latent parameter* of a probability distribution
- Need mixture models to capture exchangeability for both words and documents
Latent Dirichlet Allocation (LDA)

- A generative probabilistic model for collections of discrete data such as text corpora
- A three-level hierarchical Bayesian model
- Each document is a random mixture over latent topics
- Each topic is a distribution over words
LDA Model

LDA assumes the following generative process for each document \(w \) in a corpus \(\mathcal{D} \):

1. Choose \(N \sim \text{Poisson}(\xi) \).
2. Choose \(\theta \sim \text{Dir}(\alpha) \).
3. For each of the \(N \) words \(w_n \):

 (a) Choose a topic \(z_n \sim \text{Multinomial}(\theta) \).

 (b) Choose a word \(w_n \) from \(p(w_n \mid z_n, \beta) \), a multinomial probability conditioned on the topic \(z_n \).

Before proceeding, a couple of assumptions are made in this basic model, some of which we will return to in subsequent sections. First, the dimensionality \(k \) of the Dirichlet distribution (and thus the dimensionality of the topic variable \(z \)) is assumed known and fixed. Second, the word probabilities are parameterized by a \(k \times V \) matrix \(\beta \) where \(\beta_{ij} = p(w^j = 1 \mid z^i = 1) \), which for now we treat as a fixed quantity that is to be estimated. Finally, the Poisson assumption is not critical to anything that follows and the parameter \(\alpha \) is a \(k \)-vector with components \(\alpha_i > 0 \),
Comparison of pLSI and LDA Model

\[\alpha \text{ and } \beta \text{ are corpus-level parameters, sampled once in corpus generating process} \]
\[\text{Variables } \theta \text{ are document-level variables, sampled once per document} \]
\[\text{Variables } z \text{ and } w \text{ are word-level variables, sampled once for each word in each document} \]
Some Related Modification of LDA

- **DF-LDA** (Andrzejewski, 2009)
 - User set must-link or cannot-link constraints, to reduce non-trivial grounding numbers
 - Only for aspect extraction
- **MaxEnt-LDA** (Zhao, 2010)
 - Jointly modeling aspect and sentiment in review text analysis
 - Maximum-Entropy to train a switch variable to separate aspect and sentiment words
 - Unsupervised
- **Seeded Aspect and Sentiment model** (SAS)
 - Semi-supervised by seeds provided by user, although in a different
Problems in Max-Ent LDA

- Without seeds (unsupervised), many discovered aspects are not meaningful to users
- Manually label data in training
SAS and ME-SAS

- Assumption: one review sentence usually talks about one aspect
- D: all documents,
- S_d: all sentences in document $d_{1...D}$
- $N_{d,s}$: all words in $s \in S_d$, also use Sent^d_s to denote s in d
- Indicator (switch) variable for distinguish between aspect and sentiment terms, $r_{d,s,j} \in \{\hat{a},\hat{o}\}$ for $w_{d,s,j}$ which is the j-th term in Sent^d_s
- $\Psi_{d,s}$: distribution of aspects and sentiments in Sent^d_s; it is also the success probability of emitting an
SAS and ME-SAS

- V: all unique non-seed terms in corpus
- C: all seed sets, each seed set, $Q_l \ (l=1...C)$, is a group of semantically related terms
- T: all aspects, φ_t is the t-th aspect, φ_0 is the model for φ_t
- Ω: distribution of seeds, $\Omega_{t,l}$ is the distribution of seeds for the t-th aspect, in seed set Q_l
SAS Model

1. For each aspect $t \in \{1, \ldots, T\}$:
 i. Draw $\varphi^o_t \sim \text{Dir} (\beta^o)$
 ii. Draw a distribution over terms and seed sets $\varphi^A_t \sim \text{Dir} (\beta^A)$
 a) For each seed set $l \in \{Q_1, \ldots, Q_C\}$
 Draw a distribution over seeds $\Omega_{t,l} \sim \text{Dir} (\gamma)$

2. For each (review) document $d \in \{1, \ldots, D\}$:
 i. Draw $\theta_d \sim \text{Dir} (\alpha)$
 ii. For each sentence $s \in \{1, \ldots, S_d\}$:
 a) Draw $z_{d,s} \sim \text{Mult} (\theta_d)$
 b) Draw $\psi_{d,s} \sim \text{Beta} (\delta)$
 c) For each term $w_{d,s,j}$ where $j \in \{1, \ldots, N_{d,s}\}$:
 I. Draw $r_{d,s,j} \sim \text{Bernoulli} (\psi_{d,s})$, $r_{d,s,j} \in \{\hat{a}, \hat{o}\}$
 II. if $r_{d,s,j} = \hat{a}$ // $w_{d,s,j}$ is a sentiment
 Emit $w_{d,s,j} \sim \text{Mult} (\varphi^A_{t,d})$
 else // $r_{d,s,j} = \hat{o}$, $w_{d,s,j}$ is an aspect
 A. Draw $u_{d,s,j} \sim \text{Mult} (\varphi^A_{t,d})$
 B. if $u_{d,s,j} \in V$ // non-seed term
 Emit $w_{d,s,j} = u_{d,s,j}$
 else // $u_{d,s,j}$ is some seed set index say $l_{d,s,j}$
 Emit $w_{d,s,j} \sim \Omega_{z_{d,s,l_{d,s,j}}}$
Move $\Psi_{d,s}$ to term plate and draw $\Psi_{d,s}$ from Max-Ent($x_{d,s,j}; \lambda$) model
Experiment

- Corpus consisted of 101,234 reviews and 692,783 sentences
- Compare ME-LDA, DF-LDA with ME-SAS and SAS
- The posterior inference was drawn after 5000 Gibbs iterations, with an initial burn-in 1000 iterations
- Max-Ent parameter λ was learned from 1000 terms which are automatically generated, and at least appeared 20 times
Experiment

- 9 major aspects (T=9): Dining, Staff, Maintenance, Check in, Cleanliness, Comfort, Amenities, Location, Value for Money (VFM)
Table 1: Top ranked aspect and sentiment words in three aspects (please see the explanation in Section 4.1).
Experiment

<table>
<thead>
<tr>
<th>No. of Seeds</th>
<th>DF-LDA</th>
<th>DF-LDA-Relaxed</th>
<th>SAS</th>
<th>ME-SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P@10</td>
<td>P@20</td>
<td>P@30</td>
<td>P@10</td>
</tr>
<tr>
<td>2</td>
<td>0.51</td>
<td>0.53</td>
<td>0.49</td>
<td>0.67</td>
</tr>
<tr>
<td>3</td>
<td>0.53</td>
<td>0.54</td>
<td>0.50</td>
<td>0.71</td>
</tr>
<tr>
<td>4</td>
<td>0.57</td>
<td>0.56</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>5</td>
<td>0.59</td>
<td>0.57</td>
<td>0.54</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 2: Average $p@n$ of the seeded aspects with the no. of seeds.

<table>
<thead>
<tr>
<th>Aspect</th>
<th>ME-LDA</th>
<th>DF-LDA</th>
<th>DF-LDA-Relaxed</th>
<th>SAS</th>
<th>ME-SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P@10</td>
<td>P@20</td>
<td>P@30</td>
<td>P@10</td>
<td>P@20</td>
</tr>
<tr>
<td>Dining</td>
<td>0.70</td>
<td>0.65</td>
<td>0.67</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>Staff</td>
<td>0.60</td>
<td>0.70</td>
<td>0.67</td>
<td>0.40</td>
<td>0.65</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0.80</td>
<td>0.75</td>
<td>0.73</td>
<td>0.40</td>
<td>0.55</td>
</tr>
<tr>
<td>Check In</td>
<td>0.70</td>
<td>0.70</td>
<td>0.67</td>
<td>0.50</td>
<td>0.65</td>
</tr>
<tr>
<td>Cleanliness</td>
<td>0.70</td>
<td>0.75</td>
<td>0.67</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Comfort</td>
<td>0.60</td>
<td>0.70</td>
<td>0.63</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>Amenities</td>
<td>0.80</td>
<td>0.80</td>
<td>0.67</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>Location</td>
<td>0.60</td>
<td>0.70</td>
<td>0.63</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>VFM</td>
<td>0.50</td>
<td>0.55</td>
<td>0.50</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.67</td>
<td>0.70</td>
<td>0.65</td>
<td>0.52</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table 3: Effect of performance on seeded and non-seeded aspects (5 seeds were used for the 6 seeded aspects).